MasterCard recently announced (see here and here for example) that it will introduce out-of-band GSM authentication into its Chip Authentication Program. Consumers will be able to authenticate banking and other online transactions using their mobile phones, either by entering a password sent to the phone by SMS or generating the password directly on their smart phone via a java application.
MSN Money states that
This new development leverages the ubiquitous nature of mobile phones. According to latest research from Forrester, the number of individual mobile users in Europe will increase to 344 million users by the end of 2014, representing 84% of the Western European population. Coupled with growing online banking fraud activity (the UK Card Association reports that online banking fraud has jumped 132% in 2008 to stand at a record £52.5m.) the possibility to harness the mobile phone for authentication purposes is considerable.
This strategic decision makes the A5/1 rainbow table generation project, led by Karsten Knol, all the more timely. The project was announced at the Hacking At Random conference in August,and described in the paper Subverting the security base of GSM. Knol has stated that one of the reasons for the project to highlight the weaknesses of A5/1 encryption is the increased usage of GSM as an additional out-of-band authentication mechanism for online protocols, and the MasterCard announcement may well prove his point. The stronger A5/3 algorithm is being phased in during upgrades to 3G networks, providing secure 128-bit encryption, and this key size is effectively beyond the reach of rainbow attacks.
However Knol’s project appears to have hit a snag about 3 weeks ago. On October 29th it was announced that a critical bug was found
All versions prior to the one released on 25 of October 2009 use a buggy LFSR to generate round function values. Instead of producing 2^{64}-1 distinct values there are in fact only 32. This means that tables that ought to not produce chain merges in the event of a collision because of different round functions do produce merges.
The message is a bit cryptic but it points to a fundamental coding error in the linear feedback shift register (LFSR) components of A5/1 (it has three). Its appears that the period (the number of clock cycles before the sequence produced by the LFSRs repeats) is only 32 as opposed to the much much larger 2^{64}-1. This bug reminds me of the problem with Debian’s random number generator for OpenSSL, where a programming error was causing keys to be generated from at most 15-bits of entropy.
The A5/1 bug has been fixed and let’s hope it does not delay the project too much. Meanwhile, keep your phone handy for future MasterCard transactions.
No comments:
Post a Comment