Sunday, November 29, 2009

How big is 2^{128}?

I came across a 2006 email thread from John Callas, CEO of PGP, trying to dispel the perception that a government agency might have the computing power to break 128-bit keys. He recounts a characterization of the required effort, that he attributes to Burt Kaliski of RSA Data Security (now part of EMC)

Imagine a computer that is the size of a grain of sand that can test keys against some encrypted data. Also imagine that it can test a key in the amount of time it takes light to cross it. Then consider a cluster of these computers, so many that if you covered the earth with them, they would cover the whole planet to the height of 1 meter. The cluster of computers would crack a 128-bit key on average in 1,000 years.

So that’s 1,000 years of computation by a cluster that would envelope the earth to a height of one metre.

Callas’ point was that modern cryptosystems are essentially unbreakable against brute force attacks, and speculating over the computational power of three letter agencies against 128-bit keys is verging on paranoia. Breaking passwords – that protect accounts, data or larger cryptographic keys – is a much more credible scenario to consider. Callas claims that two thirds of people use a password related to a pet or loved one, and there is no need for a planet-sized cluster to guess those.


1 comment:

boy labyog said...

Thanks for sharing i want to share you also my great mens suit from emensuits so you can also try.